-->

Senin, 17 Juli 2017

Alan Mathison Turing OBE FRS (; June 23, 1912 â€" June 7, 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher and theoretical biologist.

He was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general purpose computer. Turing is widely considered to be the father of theoretical computer science and artificial intelligence.

During the Second World War, he worked for the Government Code and Cypher School (GC&CS) at Bletchley Park, Britain's codebreaking centre that produced Ultra intelligence. For a time he led Hut 8, the section which was responsible for German naval cryptanalysis. Here he devised a number of techniques for speeding the breaking of German ciphers, including improvements to the pre-war Polish bombe method, an electromechanical machine that could find settings for the Enigma machine. Turing played a pivotal role in cracking intercepted coded messages that enabled the Allies to defeat the Nazis in many crucial engagements, including the Battle of the Atlantic, and in so doing helped win the war. Counterfactual history is difficult with respect to the effect Ultra intelligence had on the length of the war, but at the upper end it has been estimated that this work shortened the war in Europe by more than two years and saved over fourteen million lives.

After the war, he worked at the National Physical Laboratory, where he designed the ACE, among the first designs for a stored-program computer. In 1948 Turing joined Max Newman's Computing Machine Laboratory at the Victoria University of Manchester, where he helped develop the Manchester computers and became interested in mathematical biology. He wrote a paper on the chemical basis of morphogenesis, and predicted oscillating chemical reactions such as the Belousovâ€"Zhabotinsky reaction, first observed in the 1960s.

Turing was prosecuted in 1952 for homosexual acts, when by the Labouchere Amendment, "gross indecency" was still criminal in the UK. He accepted chemical castration treatment, with DES, as an alternative to prison. Turing died in 1954, 16 days before his 42nd birthday, from cyanide poisoning. An inquest determined his death as suicide, but it has been noted that the known evidence is also consistent with accidental poisoning. In 2009, following an Internet campaign, British Prime Minister Gordon Brown made an official public apology on behalf of the British government for "the appalling way he was treated." Queen Elizabeth II granted him a posthumous pardon in 2013. The Alan Turing law is now an informal term for a 2017 law in the United Kingdom that retroactively pardoned men cautioned or convicted under historical legislation that outlawed homosexual acts.

Early life



source : www.npl.co.uk

Turing was born in Maida Vale, London, while his father, Julius Mathison Turing (1873â€"1947), was on leave from his position with the Indian Civil Service (ICS) at Chhatrapur, Bihar and Orissa Province, in British India. Turing's father was the son of a clergyman, the Rev. John Robert Turing, from a Scottish family of merchants that had been based in the Netherlands and included a baronet. Turing's mother, Julius' wife, was Ethel Sara (née Stoney; 1881â€"1976), daughter of Edward Waller Stoney, chief engineer of the Madras Railways. The Stoneys were a Protestant Anglo-Irish gentry family from both County Tipperary and County Longford, while Ethel herself had spent much of her childhood in County Clare.

Julius' work with the ICS brought the family to British India, where his grandfather had been a general in the Bengal Army. However, both Julius and Ethel wanted their children to be brought up in Britain, so they moved to Maida Vale, London, where Alan Turing was born on June 23, 1912, as recorded by a blue plaque on the outside of the house of his birth, later the Colonnade Hotel. He had an elder brother, John (the father of Sir John Dermot Turing, 12th Baronet of the Turing baronets).

Turing's father's civil service commission was still active and during Turing's childhood years Turing's parents travelled between Hastings in England and India, leaving their two sons to stay with a retired Army couple. At Hastings, Turing stayed at Baston Lodge, Upper Maze Hill, St Leonards-on-Sea, now marked with a blue plaque. The plaque was unveiled on June 23, 2012, the centenary of Turing's birth.

Very early in life, Turing showed signs of the genius that he was later to display prominently. His parents purchased a house in Guildford in 1927, and Turing lived there during school holidays. The location is also marked with a blue plaque.

Education



source : www.pbs.org

School

Turing's parents enrolled him at St Michael's, a day school at 20 Charles Road, St Leonards-on-Sea, at the age of six. The headmistress recognised his talent early on, as did many of his subsequent teachers.

Between January 1922 and 1926, Turing was educated at Hazelhurst Preparatory School, an independent school in the village of Frant in Sussex (now East Sussex). In 1926, at the age of 13, he went on to Sherborne School, an boarding independent school in the market town of Sherborne in Dorset. The first day of term coincided with the 1926 General Strike in Britain, but he was so determined to attend, that he rode his bicycle unaccompanied 60 miles (97 km) from Southampton to Sherborne, stopping overnight at an inn.

Turing's natural inclination towards mathematics and science did not earn him respect from some of the teachers at Sherborne, whose definition of education placed more emphasis on the classics. His headmaster wrote to his parents: "I hope he will not fall between two stools. If he is to stay at public school, he must aim at becoming educated. If he is to be solely a Scientific Specialist, he is wasting his time at a public school". Despite this, Turing continued to show remarkable ability in the studies he loved, solving advanced problems in 1927 without having studied even elementary calculus. In 1928, aged 16, Turing encountered Albert Einstein's work; not only did he grasp it, but it is possible that he managed to deduce Einstein's questioning of Newton's laws of motion from a text in which this was never made explicit.

Christopher Morcom

At Sherborne, Turing formed a significant friendship with fellow pupil Christopher Morcom, who has been described as Turing's "first love". Their relationship provided inspiration in Turing's future endeavours, but it was cut short by Morcom's death, in February 1930, from complications of bovine tuberculosis, contracted after drinking infected cow's milk some years previously.

The event caused Turing great sorrow. He coped with his grief by working that much harder on the topics of science and mathematics that he had shared with Morcom. In a letter to Morcom's mother Turing said:

I am sure I could not have found anywhere another companion so brilliant and yet so charming and unconceited. I regarded my interest in my work, and in such things as astronomy (to which he introduced me) as something to be shared with him and I think he felt a little the same about me ... I know I must put as much energy if not as much interest into my work as if he were alive, because that is what he would like me to do.

Some have speculated that Morcom's death was the cause of Turing's atheism and materialism. Apparently, at this point in his life he still believed in such concepts as a spirit, independent of the body and surviving death. In a later letter, also written to Morcom's mother, Turing said:

Personally, I believe that spirit is really eternally connected with matter but certainly not by the same kind of body ... as regards the actual connection between spirit and body I consider that the body [can] hold on to a 'spirit', whilst the body is alive and awake the two are firmly connected. When the body is asleep I cannot guess what happens but when the body dies, the 'mechanism' of the body, holding the spirit is gone and the spirit finds a new body sooner or later, perhaps immediately.

University and work on computability

After Sherborne, Turing studied as an undergraduate from 1931 to 1934 at King's College, Cambridge, where he gained first-class honours in mathematics. In 1935, at the age of 22, he was elected a fellow of King's on the strength of a dissertation in which he proved the central limit theorem. Unknown to the committee, the theorem had already been proven, in 1922, by Jarl Waldemar Lindeberg.

In 1936, Turing published his paper "On Computable Numbers, with an Application to the Entscheidungsproblem" (1936). In this paper, Turing reformulated Kurt Gödel's 1931 results on the limits of proof and computation, replacing Gödel's universal arithmetic-based formal language with the formal and simple hypothetical devices that became known as Turing machines. The Entscheidungsproblem (decision problem) was originally posed by German mathematician David Hilbert in 1928. Turing proved that his "universal computing machine" would be capable of performing any conceivable mathematical computation if it were representable as an algorithm. He went on to prove that there was no solution to the decision problem by first showing that the halting problem for Turing machines is undecidable: It is not possible to decide algorithmically whether a Turing machine will ever halt.

Although Turing's proof was published shortly after Alonzo Church's equivalent proof using his lambda calculus, Turing's approach is considerably more accessible and intuitive than Church's. It also included a notion of a 'Universal Machine' (now known as a universal Turing machine), with the idea that such a machine could perform the tasks of any other computation machine (as indeed could Church's lambda calculus). According to the Churchâ€"Turing thesis, Turing machines and the lambda calculus are capable of computing anything that is computable. John von Neumann acknowledged that the central concept of the modern computer was due to Turing's paper. To this day, Turing machines are a central object of study in theory of computation.

From September 1936 to July 1938, Turing spent most of his time studying under Church at Princeton University. In addition to his purely mathematical work, he studied cryptology and also built three of four stages of an electro-mechanical binary multiplier. In June 1938, he obtained his PhD from Princeton; his dissertation, Systems of Logic Based on Ordinals, introduced the concept of ordinal logic and the notion of relative computing, where Turing machines are augmented with so-called oracles, allowing the study of problems that cannot be solved by Turing machines. John von Neumann wanted to hire him as his postdoctoral assistant, but he went back to England.

When Turing returned to Cambridge, he attended lectures given in 1939 by Ludwig Wittgenstein about the foundations of mathematics. Remarkably, the lectures have been reconstructed verbatim, including interjections from Turing and other students, from students' notes. Turing and Wittgenstein argued and disagreed, with Turing defending formalism and Wittgenstein propounding his view that mathematics does not discover any absolute truths, but rather invents them.

Cryptanalysis



source : slippedisc.com

During the Second World War, Turing was a leading participant in the breaking of German ciphers at Bletchley Park. The historian and wartime codebreaker Asa Briggs has said, "You needed exceptional talent, you needed genius at Bletchley and Turing's was that genius." From September 1938, Turing had been working part-time with the GC&CS, the British codebreaking organisation. He concentrated on cryptanalysis of the Enigma with Dilly Knox, a senior GC&CS codebreaker. Soon after the July 1939 Warsaw meeting at which the Polish Cipher Bureau had provided the British and French with the details of the wiring of Enigma rotors and their method of decrypting Enigma code messages, Turing and Knox started to work on a less fragile approach to the problem. The Polish method relied on an insecure indicator procedure that the Germans were likely to change, which they did in May 1940. Turing's approach was more general, using crib-based decryption for which he produced the functional specification of the bombe (an improvement of the Polish Bomba).

On September 4, 1939, the day after the UK declared war on Germany, Turing reported to Bletchley Park, the wartime station of GC&CS. Specifying the bombe was the first of five major cryptanalytical advances that Turing made during the war. The others were: deducing the indicator procedure used by the German navy; developing a statistical procedure for making much more efficient use of the bombes dubbed Banburismus; developing a procedure for working out the cam settings of the wheels of the Lorenz SZ 40/42 (Tunny) dubbed Turingery and, towards the end of the war, the development of a portable secure voice scrambler at Hanslope Park that was codenamed Delilah.

By using statistical techniques to optimise the trial of different possibilities in the code breaking process, Turing made an innovative contribution to the subject. He wrote two papers discussing mathematical approaches, titled The Applications of Probability to Cryptography and Paper on Statistics of Repetitions, which were of such value to GC&CS and its successor GCHQ that they were not released to the UK National Archives until April 2012, shortly before the centenary of his birth. A GCHQ mathematician, "who identified himself only as Richard," said at the time that the fact that the contents had been restricted for some 70 years demonstrated their importance, and their relevance to post-war cryptanalysis:

[He] said the fact that the contents had been restricted "shows what a tremendous importance it has in the foundations of our subject". ... The papers detailed using "mathematical analysis to try and determine which are the more likely settings so that they can be tried as quickly as possible." ... Richard said that GCHQ had now "squeezed the juice" out of the two papers and was "happy for them to be released into the public domain".

Turing had something of a reputation for eccentricity at Bletchley Park. He was known to his colleagues as 'Prof' and his treatise on Enigma was known as 'The Prof's Book'. Jack Good, a cryptanalyst who worked with him, is quoted by Ronald Lewin as having said of Turing:

In the first week of June each year he would get a bad attack of hay fever, and he would cycle to the office wearing a service gas mask to keep the pollen off. His bicycle had a fault: the chain would come off at regular intervals. Instead of having it mended he would count the number of times the pedals went round and would get off the bicycle in time to adjust the chain by hand. Another of his eccentricities is that he chained his mug to the radiator pipes to prevent it being stolen.

While working at Bletchley, Turing, who was a talented long-distance runner, occasionally ran the 40 miles (64 km) to London when he was needed for high-level meetings, and he was capable of world-class marathon standards. Turing tried out for the 1948 British Olympic team, hampered by an injury. His tryout time for the marathon was only 11 minutes slower than British silver medallist Thomas Richards' Olympic race time of 2 hours 35 minutes. He was Walton Athletic Club's best runner, a fact discovered when he passed the group while running alone.

In 1946, Turing was appointed an Officer of the Order of the British Empire (OBE) by King George VI for his wartime services, but his work remained secret for many years.

Bombe

Within weeks of arriving at Bletchley Park, Turing had specified an electromechanical machine that could help break Enigma more effectively than the Polish bomba kryptologiczna, from which its name was derived. The bombe, with an enhancement suggested by mathematician Gordon Welchman, became one of the primary tools, and the major automated one, used to attack Enigma-enciphered messages.

Jack Good opined:

Turing's most important contribution, I think, was of part of the design of the bombe, the cryptanalytic machine. He had the idea that you could use, in effect, a theorem in logic which sounds, to the untrained ear, rather absurd; namely that, from a contradiction, you can deduce everything.

The bombe searched for possible correct settings used for an Enigma message (i.e., rotor order, rotor settings and plugboard settings), using a suitable crib: a fragment of probable plaintext. For each possible setting of the rotors (which had on the order of 1019 states, or 1022 states for the four-rotor U-boat variant), the bombe performed a chain of logical deductions based on the crib, implemented electromechanically.

The bombe detected when a contradiction had occurred and ruled out that setting, moving on to the next. Most of the possible settings would cause contradictions and be discarded, leaving only a few to be investigated in detail. A contradiction would occur when an enciphered letter would be turned back into the same plaintext letterâ€"this simply wasn't possible with the Enigma. The first bombe was installed on March 18, 1940.

By late 1941, Turing and his fellow cryptanalysts Gordon Welchman, Hugh Alexander, and Stuart Milner-Barry were frustrated. Building on the work of the Poles, they had set up a good working system for decrypting Enigma signals, but they only had a few people and a few bombes, so they did not have time to translate all the signals. In the summer, they had had considerable success, and shipping losses had fallen to under 100,000 tons a month, but they were still on a knife-edge. They badly needed more resources to keep abreast of German adjustments. They had tried to get more people and fund more bombes through the proper channels, but they were getting nowhere. Finally, breaking all the rules, on 28 October they wrote directly to Winston Churchill spelling out their difficulties, with Turing as the first named. They emphasised how small their need was compared with the vast expenditure of men and money by the forces and compared with the level of assistance they could offer to the forces.

As Andrew Hodges, biographer of Turing, later wrote, "This letter had an electric effect." Churchill wrote a memo to General Ismay, which read: "ACTION THIS DAY. Make sure they have all they want on extreme priority and report to me that this has been done." On November 18, the chief of the secret service reported that every possible measure was being taken. The cryptographers at Bletchley Park did not know of the Prime Minister's response, but as Milner-Barry later recalled, "All that we did notice was that almost from that day the rough ways began miraculously to be made smooth." More than two hundred bombes were in operation by the end of the war.

Hut 8 and the naval Enigma

Turing decided to tackle the particularly difficult problem of German naval Enigma "because no one else was doing anything about it and I could have it to myself". In December 1939, Turing solved the essential part of the naval indicator system, which was more complex than the indicator systems used by the other services.

That same night, he also conceived of the idea of Banburismus, a sequential statistical technique (what Abraham Wald later called sequential analysis) to assist in breaking the naval Enigma, "though I was not sure that it would work in practice, and was not, in fact, sure until some days had actually broken." For this, he invented a measure of weight of evidence that he called the ban. Banburismus could rule out certain sequences of the Enigma rotors, substantially reducing the time needed to test settings on the bombes.

In 1941, Turing proposed marriage to Hut 8 colleague Joan Clarke, a fellow mathematician and cryptanalyst, but their engagement was short-lived. After admitting his homosexuality to his fiancée, who was reportedly "unfazed" by the revelation, Turing decided that he could not go through with the marriage.

Turing travelled to the United States in November 1942 and worked with US Navy cryptanalysts on the naval Enigma and bombe construction in Washington; he also visited their Computing Machine Laboratory in Dayton, Ohio.

Turing's reaction to the American bombe design was far from enthusiastic:

The American Bombe programme was to produce 336 Bombes, one for each wheel order. I used to smile inwardly at the conception of Bombe hut routine implied by this programme, but thought that no particular purpose would be served by pointing out that we would not really use them in that way.

Their test (of commutators) can hardly be considered conclusive as they were not testing for the bounce with electronic stop finding devices. Nobody seems to be told about rods or offiziers or banburismus unless they are really going to do something about it.

During this trip, he also assisted at Bell Labs with the development of secure speech devices. He returned to Bletchley Park in March 1943. During his absence, Hugh Alexander had officially assumed the position of head of Hut 8, although Alexander had been de facto head for some time (Turing having little interest in the day-to-day running of the section). Turing then became a general consultant for cryptanalysis at Bletchley Park.

Alexander wrote this about Turing's contribution:

There should be no question in anyone's mind that Turing's work was the biggest factor in Hut 8's success. In the early days, he was the only cryptographer who thought the problem worth tackling and not only was he primarily responsible for the main theoretical work within the Hut, but he also shared with Welchman and Keen the chief credit for the invention of the bombe. It is always difficult to say that anyone is 'absolutely indispensable', but if anyone was indispensable to Hut 8, it was Turing. The pioneer's work always tends to be forgotten when experience and routine later make everything seem easy and many of us in Hut 8 felt that the magnitude of Turing's contribution was never fully realised by the outside world.

Turingery

In July 1942, Turing devised a technique termed Turingery (or jokingly Turingismus) for use against the Lorenz cipher messages produced by the Germans' new Geheimschreiber (secret writer) machine. This was a teleprinter rotor cipher attachment codenamed Tunny at Bletchley Park. Turingery was a method of wheel-breaking, i.e., a procedure for working out the cam settings of Tunny's wheels. He also introduced the Tunny team to Tommy Flowers who, under the guidance of Max Newman, went on to build the Colossus computer, the world's first programmable digital electronic computer, which replaced a simpler prior machine (the Heath Robinson), and whose superior speed allowed the statistical decryption techniques to be applied usefully to the messages. Some have mistakenly said that Turing was a key figure in the design of the Colossus computer. Turingery and the statistical approach of Banburismus undoubtedly fed into the thinking about cryptanalysis of the Lorenz cipher, but he was not directly involved in the Colossus development.

Delilah

Following his work at Bell Labs in the US, Turing pursued the idea of electronic enciphering of speech in the telephone system, and in the latter part of the war, he moved to work for the Secret Service's Radio Security Service (later HMGCC) at Hanslope Park. There he further developed his knowledge of electronics with the assistance of engineer Donald Bayley. Together they undertook the design and construction of a portable secure voice communications machine codenamed Delilah. It was intended for different applications, lacking capability for use with long-distance radio transmissions, and in any case, Delilah was completed too late to be used during the war. Though the system worked fully, with Turing demonstrating it to officials by encrypting and decrypting a recording of a Winston Churchill speech, Delilah was not adopted for use. Turing also consulted with Bell Labs on the development of SIGSALY, a secure voice system that was used in the later years of the war.

Early computers and the Turing test



source : www.geoffwilkins.net

Between 1945 and 1947, Turing lived in Hampton, London, while he worked on the design of the ACE (Automatic Computing Engine) at the National Physical Laboratory (NPL). He presented a paper on February 19, 1946, which was the first detailed design of a stored-program computer. Von Neumann's incomplete First Draft of a Report on the EDVAC had predated Turing's paper, but it was much less detailed and, according to John R. Womersley, Superintendent of the NPL Mathematics Division, it "contains a number of ideas which are Dr. Turing's own". Although ACE was a feasible design, the secrecy surrounding the wartime work at Bletchley Park led to delays in starting the project and he became disillusioned. In late 1947 he returned to Cambridge for a sabbatical year during which he produced a seminal work on Intelligent Machinery that was not published in his lifetime. While he was at Cambridge, the Pilot ACE was being built in his absence. It executed its first program on May 10, 1950, and a number of later computers around the world owe much to it, including the English Electric DEUCE and the American Bendix G-15. The full version of Turing's ACE was not built until after his death.

According to the memoirs of the German computer pioneer Heinz Billing from the Max Planck Institute for Physics, published by Genscher, Düsseldorf, there was a meeting between Alan Turing and Konrad Zuse. It took place in Göttingen in 1947. The interrogation had the form of a colloquium. Participants were Womersley, Turing, Porter from England and a few German researchers like Zuse, Walther, and Billing (for more details see Herbert Bruderer, Konrad Zuse und die Schweiz).

In 1948 Turing was appointed Reader in the Mathematics Department at the Victoria University of Manchester. In 1949, he became Deputy Director of the Computing Machine Laboratory there, working on software for one of the earliest stored-program computersâ€"the Manchester Mark 1. During this time he continued to do more abstract work in mathematics, and in "Computing Machinery and Intelligence" (Mind, October 1950), Turing addressed the problem of artificial intelligence, and proposed an experiment that became known as the Turing test, an attempt to define a standard for a machine to be called "intelligent". The idea was that a computer could be said to "think" if a human interrogator could not tell it apart, through conversation, from a human being. In the paper, Turing suggested that rather than building a program to simulate the adult mind, it would be better rather to produce a simpler one to simulate a child's mind and then to subject it to a course of education. A reversed form of the Turing test is widely used on the Internet; the CAPTCHA test is intended to determine whether the user is a human or a computer.

In 1948 Turing, working with his former undergraduate colleague, D. G. Champernowne, began writing a chess program for a computer that did not yet exist. By 1950, the program was completed and dubbed the Turochamp. In 1952, he tried to implement it on a Ferranti Mark 1, but lacking enough power, the computer was unable to execute the program. Instead, Turing played a game in which he simulated the computer, taking about half an hour per move. The game was recorded. The program lost to Turing's colleague Alick Glennie, although it is said that it won a game against Champernowne's wife.

His Turing test was a significant, characteristically provocative and lasting contribution to the debate regarding artificial intelligence, which continues after more than half a century. He also invented the LU decomposition method in 1948, used today for solving matrix equations.

Pattern formation and mathematical biology



source : www.gineersnow.com

In 1951, when Turing was 39 years old, he turned to mathematical biology, finally publishing his masterpiece "The Chemical Basis of Morphogenesis" in January 1952. He was interested in morphogenesis, the development of patterns and shapes in biological organisms. Among other things, he wanted to understand Fibonacci phyllotaxis, the existence of Fibonacci numbers in plant structures. He suggested that a system of chemicals reacting with each other and diffusing across space, termed a reaction-diffusion system, could account for "the main phenomena of morphogenesis". He used systems of partial differential equations to model catalytic chemical reactions. For example, if a catalyst A is required for a certain chemical reaction to take place, and if the reaction produced more of the catalyst A, then we say that the reaction is autocatalytic, and there is positive feedback that can be modelled by nonlinear differential equations. Turing discovered that patterns could be created if the chemical reaction not only produced catalyst A, but also produced an inhibitor B that slowed down the production of A. If A and B then diffused through the container at different rates, then you could have some regions where A dominated and some where B did. In order to calculate the extent of this, Turing would have needed a powerful computer, but these were not so freely available in 1951, so he had to use linear approximations in order to solve the equations by hand. Fortunately these calculations gave the right qualitative results, and produced, for example, a uniform mixture that oddly enough had regularly spaced fixed red spots. The Russian biochemist Boris Belousov had performed experiments with similar results, but could not get his papers published because of the contemporary prejudice that any such thing violated the second law of thermodynamics. For a modern view of living organisms and the second law see The Second Law of Thermodynamics Section#7. Unfortunately Belousov was not aware of Turing's paper in the Philosophical Transactions of the Royal Society.

Although published before the structure and role of DNA was understood, Turing's work on morphogenesis remains relevant today, and is considered a seminal piece of work in mathematical biology. One of the early applications of Turing's paper was the work by James Murray explaining spots and stripes on the fur of cats, large and small. Further research in the area suggests that Turing's work can partially explain the growth of "feathers, hair follicles, the branching pattern of lungs, and even the left-right asymmetry that puts the heart on the left side of the chest." In 2012, Sheth, et al. found that in mice, removal of Hox genes causes an increase in the number of digits without an increase in the overall size of the limb, suggesting that Hox genes control digit formation by tuning the wavelength of a Turing-type mechanism. Later papers, though promised, were not available until Collected Works of A. M. Turing was published in 1992.

Conviction for indecency



source : www.geoffwilkins.net

In January 1952, Turing, then 39, started a relationship with Arnold Murray, a 19-year-old unemployed man. Turing had met Murray just before Christmas outside the Regal Cinema when walking down Manchester's Oxford Road and invited him to lunch. On January 23, Turing's house was burgled. Murray told Turing that the burglar was an acquaintance of his, and Turing reported the crime to the police. During the investigation, he acknowledged a sexual relationship with Murray. Homosexual acts were criminal offenses in the United Kingdom at that time, and both men were charged with gross indecency under Section 11 of the Criminal Law Amendment Act 1885. Initial committal proceedings for the trial were held on February 27, during which Turing's solicitor "reserved his defense", i.e. did not argue or provide evidence against the allegations.

Later, convinced by the advice of his brother and his own solicitor, Turing entered a plea of guilty. The case, Regina v. Turing and Murray, was brought to trial on March 31, 1952. Turing was convicted and given a choice between imprisonment and probation, which would be conditional on his agreement to undergo hormonal treatment designed to reduce libido. He accepted the option of treatment via injections of what was then called stilboestrol (now known as diethylstilbestrol or DES), a synthetic oestrogen; this treatment was continued for the course of one year. The treatment rendered Turing impotent and caused gynaecomastia, fulfilling in the literal sense Turing's prediction that "no doubt I shall emerge from it all a different man, but quite who I've not found out". Murray was given a conditional discharge.

Turing's conviction led to the removal of his security clearance and barred him from continuing with his cryptographic consultancy for the Government Communications Headquarters (GCHQ), the British signals intelligence agency that had evolved from GC&CS in 1946 (though he kept his academic job). He was denied entry into the United States after his conviction in 1952, but was free to visit other European countries. Turing was never accused of espionage, but in common with all who had worked at Bletchley Park, he was prevented by the Official Secrets Act from discussing his war work.

Chess algorithm



source : pyrite.club

Alan Turing is credited with designing the first computer chess program in 1953. Turing first worked on the algorithm in 1948 The program did not run on a computer; Turing "ran" the program by flipping through the pages of the algorithm and carrying out its instructions on a chessboard. According to Garry Kasparov, Turing's program "played a recognizable game of chess."

Death



source : www.computerhistory.org

On June 8, 1954, Turing's housekeeper found him dead. He had died the previous day. A post-mortem examination established that the cause of death was cyanide poisoning. When his body was discovered, an apple lay half-eaten beside his bed, and although the apple was not tested for cyanide, it was speculated that this was the means by which a fatal dose was consumed. An inquest determined that he had committed suicide, and he was cremated at Woking Crematorium on June 12, 1954. Turing's ashes were scattered there, just as his father's had been. Andrew Hodges and another biographer, David Leavitt, have both suggested that Turing was re-enacting a scene from the Walt Disney film Snow White and the Seven Dwarfs (1937), his favourite fairy tale, both noting that (in Leavitt's words) he took "an especially keen pleasure in the scene where the Wicked Queen immerses her apple in the poisonous brew."

Alternative death theories

Philosophy professor Jack Copeland has questioned various aspects of the coroner's historical verdict. He suggests an alternative explanation for the cause of Turing's death, this being the accidental inhalation of cyanide fumes from an apparatus for electroplating gold onto spoons, which uses potassium cyanide to dissolve the gold. Turing had such an apparatus set up in his tiny spare room. Copeland notes that the autopsy findings were more consistent with inhalation than with ingestion of the poison. Turing also habitually ate an apple before bed, and it was not unusual for it to be discarded half-eaten. In addition, Turing had reportedly borne his legal setbacks and hormone treatment (which had been discontinued a year previously) "with good humour" and had shown no sign of despondency prior to his death, even setting down a list of tasks he intended to complete upon return to his office after the holiday weekend. At the time, Turing's mother believed that the ingestion was accidental, resulting from her son's careless storage of laboratory chemicals. Going even further, biographer Andrew Hodges suggests Turing arranged the cyanide experiment deliberately to allow his mother plausible deniability.

Recognition and tributes



A biography published by the Royal Society shortly after Turing's death, while his wartime work was still subject to the Official Secrets Act, recorded:

Three remarkable papers written just before the war, on three diverse mathematical subjects, show the quality of the work that might have been produced if he had settled down to work on some big problem at that critical time. For his work at the Foreign Office he was awarded the OBE.

Since 1966, the Turing Award has been given annually by the Association for Computing Machinery for technical or theoretical contributions to the computing community. It is widely considered to be the computing world's highest honour, equivalent to the Nobel Prize.

On June 23, 1998, on what would have been Turing's 86th birthday, his biographer, Andrew Hodges, unveiled an official English Heritage blue plaque at his birthplace and childhood home in Warrington Crescent, London, later the Colonnade Hotel. To mark the 50th anniversary of his death, a memorial plaque was unveiled on June 7, 2004 at his former residence, Hollymeade, in Wilmslow, Cheshire.

On March 13, 2000, Saint Vincent and the Grenadines issued a set of postage stamps to celebrate the greatest achievements of the 20th century, one of which carries a portrait of Turing against a background of repeated 0s and 1s, and is captioned: "1937: Alan Turing's theory of digital computing". On April 1, 2003, Turing's work at Bletchley Park was named an IEEE Milestone. On October 28, 2004, a bronze statue of Alan Turing sculpted by John W. Mills was unveiled at the University of Surrey in Guildford, marking the 50th anniversary of Turing's death; it portrays him carrying his books across the campus.

Turing was one of four mathematicians examined in the BBC documentary entitled Dangerous Knowledge (2008). The Princeton Alumni Weekly named Turing the second most significant alumnus in the history of Princeton University, second only to President James Madison. A 1.5-ton, life-size statue of Turing was unveiled on June 19, 2007 at Bletchley Park. Built from approximately half a million pieces of Welsh slate, it was sculpted by Stephen Kettle, having been commissioned by the American billionaire Sidney Frank.

Turing has been honoured in various ways in Manchester, the city where he worked towards the end of his life. In 1994, a stretch of the A6010 road (the Manchester city intermediate ring road) was named "Alan Turing Way". A bridge carrying this road was widened, and carries the name Alan Turing Bridge. A statue of Turing was unveiled in Manchester on June 23, 2001 in Sackville Park, between the University of Manchester building on Whitworth Street and Canal Street. The memorial statue depicts the "father of computer science" sitting on a bench at a central position in the park. Turing is shown holding an apple. The cast bronze bench carries in relief the text 'Alan Mathison Turing 1912â€"1954', and the motto 'Founder of Computer Science' as it could appear if encoded by an Enigma machine: 'IEKYF ROMSI ADXUO KVKZC GUBJ'.

A plaque at the statue's feet reads 'Father of computer science, mathematician, logician, wartime codebreaker, victim of prejudice'. There is also a Bertrand Russell quotation: "Mathematics, rightly viewed, possesses not only truth, but supreme beautyâ€"a beauty cold and austere, like that of sculpture." The sculptor buried his own old Amstrad computer under the plinth as a tribute to "the godfather of all modern computers".

In 1999, Time magazine named Turing as one of the 100 Most Important People of the 20th century and stated, "The fact remains that everyone who taps at a keyboard, opening a spreadsheet or a word-processing program, is working on an incarnation of a Turing machine."

In 2002, Turing was ranked twenty-first on the BBC's poll of the 100 Greatest Britons following a UK-wide vote. In 2006, British writer and mathematician Ioan James chose Turing as one of twenty people to feature in his book about famous historical figures who may have had some of the traits of Asperger syndrome. In 2010, actor/playwright Jade Esteban Estrada portrayed Turing in the solo musical, ICONS: The Lesbian and Gay History of the World, Vol. 4. In 2011, in The Guardian's "My hero" series, writer Alan Garner chose Turing as his hero and described how they had met while out jogging in the early 1950s. Garner remembered Turing as "funny and witty" and said that he "talked endlessly". In 2006, Alan Turing was named with online resources as an LGBT History Month Icon. In 2006, Boston Pride named Turing their Honorary Grand Marshal.

The logo of Apple Inc. is often erroneously referred to as a tribute to Alan Turing, with the bite mark a reference to his death. Both the designer of the logo and the company deny that there is any homage to Turing in the design. Stephen Fry has recounted asking Steve Jobs whether the design was intentional, saying that Jobs' response was, "God, we wish it were." In February 2011, Turing's papers from the Second World War were bought for the nation with an 11th-hour bid by the National Heritage Memorial Fund, allowing them to stay at Bletchley Park.

In 2012, Turing was inducted into the Legacy Walk, an outdoor public display that celebrates LGBT history and people.

The francophone singer-songwriter Salvatore Adamo made a tribute to Turing with his song "Alan et la Pomme". Turing's life and work featured in a BBC children's programme about famous scientistsâ€"Absolute Genius with Dick and Domâ€"first broadcast on March 12, 2014.

On May 17, 2014, the world's first work of public art to recognise Alan Turing as gay was commissioned in Bletchley, close by to Bletchley Park where his war-time work was carried out. The commission was announced by the owners of Milton Keynes-based LGBT venue and nightclub Pink Punters to mark International Day Against Homophobia and Transphobia. The work was unveiled at a ceremony on Turing's birthday, June 23, 2014, and is placed outside Pink Punter's alongside the busy Watling Street, the old main road to London, where Turing himself would have passed by on many occasions. On October 22, 2014, Turing was inducted into the NSA Hall of Honor.

Tributes by universities and research institutions

  • The computer room at King's College, Cambridge, Alan Turing's alma mater, is called the Turing Room.
  • The Turing Room at the University of Edinburgh's School of Informatics houses a bust of Turing by Eduardo Paolozzi, and a set (No. 42/50) of his Turing prints (2000).
  • The University of Surrey has a statue of Turing on their main piazza and one of the buildings of Faculty of Engineering and Physical Sciences is named after him.
  • Istanbul Bilgi University organises an annual conference on the theory of computation called "Turing Days".
  • The University of Texas at Austin has an honours computer science programme named the Turing Scholars.
  • In the early 1960s, Stanford University named the sole lecture room of the Polya Hall Mathematics building "Alan Turing Auditorium".
  • One of the amphitheatres of the Computer Science department (LIFL) at the University of Lille in northern France is named in honour of Alan M. Turing (the other amphitheatre is named after Kurt Gödel).
  • The University of Washington has a computer laboratory named after Turing.
  • The University of Manchester, the Open University, Oxford Brookes University and Aarhus University (in Aarhus, Denmark) all have buildings named after Turing.
  • Alan Turing Road in the Surrey Research Park and the Alan Turing Way, part of the Manchester inner ring road are named after Alan Turing.
  • Carnegie Mellon University has a granite bench, situated in the Hornbostel Mall, with the name "A. M. Turing" carved across the top, "Read" down the left leg, and "Write" down the other.
  • The University of Oregon has a bust of Turing on the side of Deschutes Hall, the computer science building.
  • The École Polytechnique Fédérale de Lausanne has a road and a square named after Alan Turing (Chemin Alan Turing and Place Alan Turing).
  • The Faculty of Informatics and Information Technologies Slovak University of Technology in Bratislava, Slovakia, has a lecture room named "Turing Auditorium".
  • The Paris Diderot University has a lecture room named "Amphithéâtre Turing".
  • The Faculty of Mathematics and Computer Science at the University of Würzburg has a lecture hall named "Turing Hörsaal".
  • The Paul Sabatier University in Toulouse has a lecture room named "Amphithéâtre Turing" (Bâtiment U4).
  • The largest conference hall at the Amsterdam Science Park is named Turingzaal.
  • King's College London's School of Natural and Mathematical Sciences awards the Alan Turing Centenary Prize.
  • The University of Kent named the Turing College after him at their Canterbury campus.
  • The campus of the École polytechnique has a building named after Alan Turing; it is a research centre whose premises are shared by the École Polytechnique, the INRIA and Microsoft.
  • The University of Toronto developed the Turing programming language in 1982, named after Alan Turing.
  • The campus of State University of Campinas in Brazil has an avenue, one of its largest, named after Turing.
  • The Department of Computer Science at Pontifical Catholic University of Chile, the University of Buenos Aires, the Polytechnic University of Puerto Rico, Los Andes University in Bogotá, Colombia, King's College, Cambridge, Bangor University in Wales, the University of Mons in Belgium, the University of Turin (Università degli Studi di Torino), the University of Puerto Rico at Humacao, Keele University and the Faculty of Computer Science, Electronics and Telecommunications of AGH University of Science and Technology, have buildings named after Turing.
  • Ghent University named a computer room after Alan Turing, in their department of Computer Science and Applied Mathematics.

Government apology and pardon



In August 2009, John Graham-Cumming started a petition urging the British Government to apologise for Turing's prosecution as a homosexual. The petition received more than 30,000 signatures. Prime Minister Gordon Brown acknowledged the petition, releasing a statement on September 10, 2009 apologizing and describing the treatment of Turing as "appalling":

Thousands of people have come together to demand justice for Alan Turing and recognition of the appalling way he was treated. While Turing was dealt with under the law of the time and we can't put the clock back, his treatment was of course utterly unfair and I am pleased to have the chance to say how deeply sorry I and we all are for what happened to him ... So on behalf of the British government, and all those who live freely thanks to Alan's work I am very proud to say: we're sorry, you deserved so much better.

John Leech, the MP for Manchester Withington (2005â€"15), was the first MP to formally submit a bill to pardon Turing. Leech said it was "ultimately just embarrassing" that the conviction still stood.

In December 2011, William Jones created an e-petition requesting the British Government pardon Turing for his conviction of "gross indecency":

We ask the HM Government to grant a pardon to Alan Turing for the conviction of "gross indecency". In 1952, he was convicted of "gross indecency" with another man and was forced to undergo so-called "organo-therapy"â€"chemical castration. Two years later, he killed himself with cyanide, aged just 41. Alan Turing was driven to a terrible despair and early death by the nation he'd done so much to save. This remains a shame on the British government and British history. A pardon can go some way to healing this damage. It may act as an apology to many of the other gay men, not as well-known as Alan Turing, who were subjected to these laws.

The petition gathered over 37,000 signatures, but the request was discouraged by Lord McNally, who gave the following opinion in his role as the Justice Minister:

A posthumous pardon was not considered appropriate as Alan Turing was properly convicted of what at the time was a criminal offence. He would have known that his offence was against the law and that he would be prosecuted. It is tragic that Alan Turing was convicted of an offence that now seems both cruel and absurdâ€"particularly poignant given his outstanding contribution to the war effort. However, the law at the time required a prosecution and, as such, long-standing policy has been to accept that such convictions took place and, rather than trying to alter the historical context and to put right what cannot be put right, ensure instead that we never again return to those times.

John Leech, the MP for Manchester Withington (2005â€"15), submitted several bills to Parliament and campaigned with William Jones to secure the pardon. Leech made the case in the House of Commons that Turing's contribution to the war made him a national hero and that it was "ultimately just embarrassing" that the conviction still stood. Leech continued to take the bill through Parliament and campaigned for several years until it was passed.

On July 26, 2012, a bill was introduced in the House of Lords to grant a statutory pardon to Turing for offences under section 11 of the Criminal Law Amendment Act 1885, of which he was convicted on March 31, 1952. Late in the year in a letter to The Daily Telegraph, the physicist Stephen Hawking and 10 other signatories including the Astronomer Royal Lord Rees, President of the Royal Society Sir Paul Nurse, Lady Trumpington (who worked for Turing during the war) and Lord Sharkey (the bill's sponsor) called on Prime Minister David Cameron to act on the pardon request. The Government indicated it would support the bill, and it passed its third reading in the Lords in October.

Before the bill could be debated in the House of Commons, the Government elected to proceed under the royal prerogative of mercy. On December 24, 2013, Queen Elizabeth II signed a pardon for Turing's conviction for gross indecency, with immediate effect. Announcing the pardon, Justice Secretary Chris Grayling said Turing deserved to be "remembered and recognized for his fantastic contribution to the war effort" and not for his later criminal conviction. The Queen officially pronounced Turing pardoned in August 2014. The Queen's action is only the fourth royal pardon granted since the conclusion of the Second World War. This case is unusual in that pardons are normally granted only when the person is technically innocent, and a request has been made by the family or other interested party. Neither condition was met in regard to Turing's conviction.

In a letter to Prime Minister David Cameron after the announcement of the pardon, human rights advocate Peter Tatchell criticized the decision to single out Turing due to his fame and achievements, when thousands of others convicted under the same law have not received pardons. Tatchell also called for a new investigation into Turing's death:

A new inquiry is long overdue, even if only to dispel any doubts about the true cause of his deathâ€"including speculation that he was murdered by the security services (or others). I think murder by state agents is unlikely. There is no known evidence pointing to any such act. However, it is a major failing that this possibility has never been considered or investigated.

In September 2016, the government announced its intention to expand this retroactive exoneration to other men convicted of similar historical indecency offences, in what was described as an "Alan Turing law". The Alan Turing law is now an informal term for the law in the United Kingdom, contained in the Policing and Crime Act 2017, which serves as an amnesty law to retroactively pardon men who were cautioned or convicted under historical legislation that outlawed homosexual acts. The law applies in England and Wales.

Centenary celebrations



To mark the 100th anniversary of Turing's birth, the Turing Centenary Advisory Committee (TCAC) co-ordinated the Alan Turing Year, a year-longprograme of events around the worldhonoringg Turing's life and achievements. The TCAC, chaired by S. Barry Cooper with Alan Turing's nephew Sir John Dermot Turing acting as Honorary President, worked with the University of Manchester faculty members and a broad spectrum of people from Cambridge University and Bletchley Park.

On June 23, 2012, Google featured an interactive doodle where visitors had to change the instructions of a Turing Machine, so when run, the symbols on the tape would match a provided sequence, featuring "Google" in Baudot-Murray code.

The Bletchley Park Trust collaborated with Winning Moves to publish an Alan Turing edition of the board game Monopoly. The game's squares and cards have been revised to tell the story of Alan Turing's life, from his birthplace in Maida Vale to Hut 8 at Bletchley Park. The game also includes a replica of an original hand-drawn board created by William Newman, son of Turing's mentor, Max Newman, which Turing played on in the 1950s.

In the Philippines, the Department of Philosophy at De La Salle University-Manila hosted Turing 2012, an international conference on philosophy, artificial intelligence, and cognitive science on March 27 & 28, to commemorate the centenary birth of Turing. Madurai, India held celebrations with a programme attended by 6,000 students.

UK celebrations

There was a three-day conference in Manchester in June, a two-day conference in San Francisco, organised by the ACM, and a birthday party and Turing Centenary Conference in Cambridge organised at King's College, Cambridge, and the University of Cambridge, the latter organised by the association Computability in Europe.

The Science Museum in London launched a free exhibition devoted to Turing's life and achievements in June 2012, to run until July 2013. In February 2012, the Royal Mail issued a stamp featuring Turing as part of its "Britons of Distinction" series. The London 2012 Olympic Torch flame was passed on in front of Turing's statue in Sackville Gardens, Manchester, on the evening of June 23, 2012, the 100th anniversary of his birth.

On June 22, 2012, Manchester City Council, in partnership with the Lesbian and Gay Foundation, launched the Alan Turing Memorial Award, which will recognize individuals or groups who have made a significant contribution to the fight against homophobia in Manchester.

At the University of Oxford, a new course in Computer Science and Philosophy was established to coincide with the centenary of Turing's birth.

Previous events have included a celebration of Turing's life and achievements, at the University of Manchester, arranged by the British Logic Colloquium and the British Society for the History of Mathematics on June 5, 2004.

Portrayal in adaptations



Theatre

  • Breaking the Code is a 1986 play by Hugh Whitemore about Alan Turing. The play ran in London's West End beginning in November 1986 and on Broadway from November 15, 1987 to April 10, 1988. There was also a 1996 BBC television production (broadcast in the United States by PBS). In all three performances Turing was played by Derek Jacobi. The Broadway production was nominated for three Tony Awards including Best Actor in a Play, Best Featured Actor in a Play, and Best Direction of a Play, and for two Drama Desk Awards, for Best Actor and Best Featured Actor. Turing was again portrayed by Jacobi in the 1996 television film adaptation of Breaking the Code.
  • In 2012, in honor of the Turing Centennial, American Lyric Theater commissioned an operatic exploration of the life and death of Alan Turing from composer Justine F. Chen and librettist David Simpatico. Titled The Life and Death(s) of Alan Turing, the opera is a historical fantasia on the life of Turing. The opera received a concert performance in October 2015 in New York City. In November 2014, the opera and several other artistic works inspired by Turing's life were featured on Studio 360.

Literature

  • In William Gibson's Neuromancer the Turing police have jurisdiction over AIs. (1984)
  • Turing is featured in the Neal Stephenson novel Cryptonomicon (1999).
  • The 2006 novel A Madman Dreams of Turing Machines contrasts fictionalised accounts of the lives and ideas of Turing and Kurt Gödel.
  • The 2015 novel Speak, written by Louisa Hall, includes a series of fictional letters written from Turing to his best friend's mother throughout his life, detailing his research about artificial intelligence.
  • In the graphic novel series Ãœber, in which a fictionalized version of WWII plays out involving superhuman soldiers called "Tank-Men", Turing is one of the researchers as well as a Tank-Man himself.

Music

  • Electronic music duo Matmos released an EP titled For Alan Turing in 2006, which was based on material commissioned by Dr. Robert Osserman and David Elsenbud of the Mathematical Sciences Research Institute. In one of its tracks, an original Enigma Machine is sampled.
  • In 2012, Spanish group Hidrogenesse dedicated their LP Un dígito binario dudoso. Recital para Alan Turing (A dubious binary digit. Concert for Alan Turing) to the memory of the mathematician.
  • A musical work inspired by Turing's life, written by Neil Tennant and Chris Lowe of the Pet Shop Boys, entitled A Man from the Future, was announced in late 2013. It was performed by the Pet Shop Boys and Juliet Stevenson (narrator), the BBC Singers, and the BBC Concert Orchestra conducted by Dominic Wheeler at the BBC Proms in the Royal Albert Hall on July 23, 2014.
  • Codebreaker is also the title of a choral work by the composer James McCarthy. It includes settings of texts by the poets Wilfred Owen, Sara Teasdale, Walt Whitman, Oscar Wilde and Robert Burns that are used to illustrate aspects of Turing's life. It was premiered on April 26, 2014 at the Barbican Centre in London, where it was performed by the Hertfordshire Chorus, who commissioned the work, led by David Temple with the soprano soloist Naomi Harvey providing the voice of Turing's mother.

Film

  • The historical drama film The Imitation Game, directed by Morten Tyldum and starring Benedict Cumberbatch as Turing and Keira Knightley as Joan Clarke, was released in the UK on November 14, 2014 and released theatrically in the US on November 28, 2014. It is about Alan Turing breaking the Enigma code with other codebreakers in Bletchley Park.
  • Codebreaker, original UK title Britain's Greatest Codebreaker, is a TV film aired on November 21, 2011 by Channel 4 about Turing's life. It had a limited release in the U.S. beginning on October 17, 2012. The story is told as a discussion between Alan Turing and his psychiatrist Dr. Franz Greenbaum. The story is based on journals maintained by Greenbaum and others who have studied Turing's life as well as some of his colleagues.

Awards and honours



OBE 1946

Turing was elected a Fellow of the Royal Society (FRS) in 1951. In addition, he has had several things named in his honour:

  • Goodâ€"Turing frequency estimation
  • Turing completeness
  • Turing degree
  • Turing Institute
  • Turing Lecture
  • Turing machine examples
  • Turing patterns
  • Turing reduction
  • Turing switch

See also



  • List of pioneers in computer science

Notes



References



Further reading



Articles

  • Copeland, B. Jack (ed.). "The Mind and the Computing Machine: Alan Turing and others". The Rutherford Journal. 
  • Copeland, B. Jack (ed.). "Alan Turing: Father of the Modern Computer". The Rutherford Journal. 
  • Hodges, Andrew (27 August 2007). "Alan Turing". In Edward N. Zalta (ed.). Stanford Encyclopedia of Philosophy (Winter 2009 ed.). Stanford University. Retrieved 10 January 2011. CS1 maint: Extra text: editors list (link)
  • Hodges, Andrew (2004). "Turing, Alan Mathison". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/36578.  (Subscription or UK public library membership required.)
  • Gray, Paul (29 March 1999). "Computer Scientist: Alan Turing". Time. 

Books

  • Copeland, B. Jack; Bowen, Jonathan P.; Wilson, Robin; Sprevak, Mark (2017). The Turing Guide. Oxford University Press. ISBN 978-0198747833. 
  • Hodges, Andrew (2014). Alan Turing: The Enigma. Princeton University Press. ISBN 978-0691164724.  (originally published in 1983); basis of the film The Imitation Game
  • Dyson, George (2012). Turing's Cathedral: The Origins of the Digital Universe. Vintage. ISBN 978-1400075997. 
  • Gleick, James (2011). The Information: A History, a Theory, a Flood. New York: Pantheon. ISBN 978-0-375-42372-7. 

Works of Turing

  • List of publications from Microsoft Academic Search
  • Alan Turing's publications indexed by Google Scholar
  • Turing, Alan (October 1950), "Computing Machinery and Intelligence", Mind, LIX (236): 433â€"460, ISSN 0026-4423, doi:10.1093/mind/LIX.236.433, retrieved 2008-08-18 

Other

  • Oral history interview with Nicholas C. Metropolis, Charles Babbage Institute, University of Minnesota. Metropolis was the first director of computing services at Los Alamos National Laboratory; topics include the relationship between Alan Turing and John von Neumann

External links



  • How Alan Turing Cracked The Enigma Code Imperial War Museums
  • Alan Turing RKBExplorer
  • Alan Turing Year
  • CiE 2012: Turing Centenary Conference
  • Alan Turing site maintained by Andrew Hodges including a short biography
  • AlanTuring.net â€" Turing Archive for the History of Computing by Jack Copeland
  • The Turing Archive â€" contains scans of some unpublished documents and material from the King's College, Cambridge archive
  • Jones, G. James (11 December 2001). "Alan Turing â€" Towards a Digital Mind: Part 1". System Toolbox. The Binary Freedom Project. 
  • Happy 100th Birthday, Alan Turing by Stephen Wolfram.
  • Sherborne School Archives â€" holds papers relating to Alan Turing's time at Sherborne School
  • Alan Turing plaques recorded on openplaques.org


 
Sponsored Links