-->

Selasa, 15 Agustus 2017

An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable). Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid (the dispersed phase) is dispersed in the other (the continuous phase). Examples of emulsions include vinaigrettes, homogenized milk, mayonnaise, and some cutting fluids for metal working. Graphene and its modified forms are also a good example of recent unconventional surfactants helping in stabilizing emulsion systems.

The word "emulsion" comes from the Latin word for "to milk", as milk is an emulsion of fat and water, along with other components.

Two liquids can form different types of emulsions. As an example, oil and water can form, first, an oil-in-water emulsion, wherein the oil is the dispersed phase, and water is the dispersion medium. (Lipoproteins, as implemented by all complex living organisms, is one example of this.) Second, they can form a water-in-oil emulsion, wherein water is the dispersed phase and oil is the external phase. Multiple emulsions are also possible, including a "water-in-oil-in-water" emulsion and an "oil-in-water-in-oil" emulsion.

Emulsions, being liquids, do not exhibit a static internal structure. The droplets dispersed in the liquid matrix (called the “dispersion medium”) are usually assumed to be statistically distributed.

The term "emulsion" is also used to refer to the photo-sensitive side of photographic film. Such a photographic emulsion consist of silver halide colloidal particles dispersed in a gelatin matrix. Nuclear emulsions are similar to photographic emulsions, except that they are used in particle physics to detect high-energy elementary particles.

Appearance and properties



source : scienceandcooking.seas.harvard.edu

Emulsions contain both a dispersed and a continuous phase, with the boundary between the phases called the "interface". Emulsions tend to have a cloudy appearance because the many phase interfaces scatter light as it passes through the emulsion. Emulsions appear white when all light is scattered equally. If the emulsion is dilute enough, higher-frequency and low-wavelength light will be scattered more, and the emulsion will appear bluer â€" this is called the "Tyndall effect". If the emulsion is concentrated enough, the color will be distorted toward comparatively longer wavelengths, and will appear more yellow. This phenomenon is easily observable when comparing skimmed milk, which contains little fat, to cream, which contains a much higher concentration of milk fat. One example would be a mixture of water and oil.

Two special classes of emulsions â€" microemulsions and nanoemulsions, with droplet sizes below 100 nm â€" appear translucent. This property is due to the fact that lightwaves are scattered by the droplets only if their sizes exceed about one-quarter of the wavelength of the incident light. Since the visible spectrum of light is composed of wavelengths between 390 and 750 nanometers (nm), if the droplet sizes in the emulsion are below about 100 nm, the light can penetrate through the emulsion without being scattered. Due to their similarity in appearance, translucent nanoemulsions and microemulsions are frequently confused. Unlike translucent nanoemulsions, which require specialized equipment to be produced, microemulsions are spontaneously formed by “solubilizing” oil molecules with a mixture of surfactants, co-surfactants, and co-solvents. The required surfactant concentration in a microemulsion is, however, several times higher than that in a translucent nanoemulsion, and significantly exceeds the concentration of the dispersed phase. Because of many undesirable side-effects caused by surfactants, their presence is disadvantageous or prohibitive in many applications. In addition, the stability of a microemulsion is often easily compromised by dilution, by heating, or by changing pH levels.

Common emulsions are inherently unstable and, thus, do not tend to form spontaneously. Energy input â€" through shaking, stirring, homogenizing, or exposure to power ultrasound â€" is needed to form an emulsion. Over time, emulsions tend to revert to the stable state of the phases comprising the emulsion. An example of this is seen in the separation of the oil and vinegar components of vinaigrette, an unstable emulsion that will quickly separate unless shaken almost continuously. There are important exceptions to this rule â€" microemulsions are thermodynamically stable, while translucent nanoemulsions are kinetically stable.

Whether an emulsion of oil and water turns into a "water-in-oil" emulsion or an "oil-in-water" emulsion depends on the volume fraction of both phases and the type of emulsifier (surfactant) (see Emulsifier, below) present. In general, the Bancroft rule applies. Emulsifiers and emulsifying particles tend to promote dispersion of the phase in which they do not dissolve very well. For example, proteins dissolve better in water than in oil, and so tend to form oil-in-water emulsions (that is, they promote the dispersion of oil droplets throughout a continuous phase of water).

The geometric structure of an emulsion mixture of two lyophobic liquids with a large concentration of the secondary component is fractal: Emulsion particles unavoidably form dynamic inhomogeneous structures on small length scale. The geometry of these structures is fractal. The size of elementary irregularities is governed by a universal function which depends on the volume content of the components. The fractal dimension of these irregularities is 2.5.

Instability

Emulsion stability refers to the ability of an emulsion to resist change in its properties over time. There are four types of instability in emulsions: flocculation, creaming, coalescence, and Ostwald ripening. Flocculation occurs when there is an attractive force between the droplets, so they form flocs, like bunches of grapes. Coalescence occurs when droplets bump into each other and combine to form a larger droplet, so the average droplet size increases over time. Emulsions can also undergo creaming, where the droplets rise to the top of the emulsion under the influence of buoyancy, or under the influence of the centripetal force induced when a centrifuge is used.

An appropriate "surface active agent" (or "surfactant") can increase the kinetic stability of an emulsion so that the size of the droplets does not change significantly with time. It is then said to be stable.

Monitoring physical stability

The stability of emulsions can be characterized using techniques such as light scattering, focused beam reflectance measurement, centrifugation, and rheology. Each method has advantages and disadvantages.

Accelerating methods for shelf life prediction

The kinetic process of destabilization can be rather long â€" up to several months, or even years for some products. Often the formulator must accelerate this process in order to test products in a reasonable time during product design. Thermal methods are the most commonly used â€" these consist of increasing the emulsion temperature to accelerate destabilization (if below critical temperatures for phase inversion or chemical degradation). Temperature affects not only the viscosity but also the inter-facial tension in the case of non-ionic surfactants or, on a broader scope, interactions of forces inside the system. Storing an emulsion at high temperatures enables the simulation of realistic conditions for a product (e.g., a tube of sunscreen emulsion in a car in the summer heat), but also to accelerate destabilization processes up to 200 times.

Mechanical methods of acceleration, including vibration, centrifugation, and agitation, can also be used.

These methods are almost always empirical, without a sound scientific basis.

Emulsifiers



source : www.pnas.org

An emulsifier (also known as an "emulgent") is a substance that stabilizes an emulsion by increasing its kinetic stability. One class of emulsifiers is known as "surface active agents", or surfactants.

Examples of food emulsifiers are:

  • Egg yolk â€" in which the main emulsifying agent is lecithin. In fact, lecithos is the Greek word for egg yolk.
  • Mustard â€" where a variety of chemicals in the mucilage surrounding the seed hull act as emulsifiers
  • Soy lecithin is another emulsifier and thickener
  • Pickering stabilization â€" uses particles under certain circumstances
  • Sodium phosphates
  • Sodium stearoyl lactylate
  • DATEM (Diacetyl Tartaric (Acid) Ester of Monoglyceride) â€" an emulsifier used primarily in baking

Detergents are another class of surfactants, and will physically interact with both oil and water, thus stabilizing the interface between the oil and water droplets in suspension. This principle is exploited in soap, to remove grease for the purpose of cleaning. Many different emulsifiers are used in pharmacy to prepare emulsions such as creams and lotions. Common examples include emulsifying wax, cetearyl alcohol, polysorbate 20, and ceteareth 20. Sometimes the inner phase itself can act as an emulsifier, and the result is a nanoemulsion, where the inner state disperses into "nano-size" droplets within the outer phase. A well-known example of this phenomenon, the "Ouzo effect", happens when water is poured into a strong alcoholic anise-based beverage, such as ouzo, pastis, absinthe, arak, or raki. The anisolic compounds, which are soluble in ethanol, then form nano-size droplets and emulsify within the water. The resulting color of the drink is opaque and milky white.

Mechanisms of emulsification



source : www.fooducation.org

A number of different chemical and physical processes and mechanisms can be involved in the process of emulsification:

  • Surface tension theory â€" according to this theory, emulsification takes place by reduction of interfacial tension between two phases
  • Repulsion theory â€" the emulsifying agent creates a film over one phase that forms globules, which repel each other. This repulsive force causes them to remain suspended in the dispersion medium
  • Viscosity modification â€" emulgents like acacia and tragacanth, which are hydrocolloids, as well as PEG (or polyethylene glycol), glycerine, and other polymers like CMC (carboxymethyl cellulose), all increase the viscosity of the medium, which helps create and maintain the suspension of globules of dispersed phase

Uses



source : ichemeblog.org

In food

Oil-in-water emulsions are common in food products:

  • Crema (foam) in espresso â€" coffee oil in water (brewed coffee), unstable emulsion
  • Mayonnaise and Hollandaise sauce â€" these are oil-in-water emulsions that are stabilized with egg yolk lecithin, or with other types of food additives, such as sodium stearoyl lactylate
  • Homogenized milk â€" an emulsion of milk fat in water and milk proteins
  • Vinaigrette â€" an emulsion of vegetable oil in vinegar. If this is prepared using only oil and vinegar (i.e., without an emulsifier), an unstable emulsion results

Water-in-oil emulsions are less common in food but still exist:

  • Butter â€" an emulsion of water in butterfat

Health care

In pharmaceutics, hairstyling, personal hygiene, and cosmetics, emulsions are frequently used. These are usually oil and water emulsions but dispersed, and which is continuous depends in many cases on the pharmaceutical formulation. These emulsions may be called creams, ointments, liniments (balms), pastes, films, or liquids, depending mostly on their oil-to-water ratios, other additives, and their intended route of administration. The first 5 are topical dosage forms, and may be used on the surface of the skin, transdermally, ophthalmically, rectally, or vaginally. A highly liquid emulsion may also be used orally, or may be injected in some cases. Popular medications occurring in emulsion form include cod liver oil, Polysporin, cortisol cream, Canesten, and Fleet.

Microemulsions are used to deliver vaccines and kill microbes. Typical emulsions used in these techniques are nanoemulsions of soybean oil, with particles that are 400â€"600 nm in diameter. The process is not chemical, as with other types of antimicrobial treatments, but mechanical. The smaller the droplet the greater the surface tension and thus the greater the force required to merge with other lipids. The oil is emulsified with detergents using a high-shear mixer to stabilize the emulsion so, when they encounter the lipids in the cell membrane or envelope of bacteria or viruses, they force the lipids to merge with themselves. On a mass scale, in effect this disintegrates the membrane and kills the pathogen. The soybean oil emulsion does not harm normal human cells, or the cells of most other higher organisms, with the exceptions of sperm cells and blood cells, which are vulnerable to nanoemulsions due to the peculiarities of their membrane structures. For this reason, these nanoemulsions are not currently used intravenously (IV). The most effective application of this type of nanoemulsion is for the disinfection of surfaces. Some types of nanoemulsions have been shown to effectively destroy HIV-1 and tuberculosis pathogens on non-porous surfaces.

In firefighting

Emulsifying agents are effective at extinguishing fires on small, thin-layer spills of flammable liquids (Class B fires). Such agents encapsulate the fuel in a fuel-water emulsion, thereby trapping the flammable vapors in the water phase. This emulsion is achieved by applying an aqueous surfactant solution to the fuel through a high-pressure nozzle. Emulsifiers are not effective at extinguishing large fires involving bulk/deep liquid fuels, because the amount of emulsifier agent needed for extinguishment is a function of the volume of the fuel, whereas other agents such as aqueous film-forming foam (AFFF) need cover only the surface of the fuel to achieve vapor mitigation.

Chemical synthesis

Emulsions are used to manufacture polymer dispersions â€" polymer production in an emulsion 'phase' has a number of process advantages, including prevention of coagulation of product. Products produced by such polymerisations may be used as the emulsions â€" products including primary components for glues and paints. Synthetic latexes (rubbers) are also produced by this process.

See also



source : www.physics.nyu.edu

References



source : www.google.com

Other sources



source : iws.collin.edu

  • Philip Sherman; British Society of Rheology (1963). Rheology of emulsions: proceedings of a symposium held by the British Society of Rheology ... Harrogate, October 1962. Macmillan. 
  • Handbook of Nanostructured Materials and Nanotechnology; Nalwa, H.S., Ed.; Academic Press: New York, NY, USA, 2000; Volume 5, pp. 501â€"575

External links



source : physics.aps.org

  • Oil in Water Reverse Emulsions and Effects on SAGD
  • A Three Part Video Series Explaining the Science Behind Culinary Emulsions
  • New generation of Leaner Label Emulsifiers
  • Emulsifiers


source : restlessmindboosters.blogspot.com

 
Sponsored Links